- Notifications
You must be signed in to change notification settings - Fork 5.8k
/
Copy path51. N-Queens.go
91 lines (87 loc) · 2.04 KB
/
51. N-Queens.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
package leetcode
// 解法一 DFS
funcsolveNQueens(nint) [][]string {
col, dia1, dia2, row, res:=make([]bool, n), make([]bool, 2*n-1), make([]bool, 2*n-1), []int{}, [][]string{}
putQueen(n, 0, &col, &dia1, &dia2, &row, &res)
returnres
}
// 尝试在一个n皇后问题中, 摆放第index行的皇后位置
funcputQueen(n, indexint, col, dia1, dia2*[]bool, row*[]int, res*[][]string) {
ifindex==n {
*res=append(*res, generateBoard(n, row))
return
}
fori:=0; i<n; i++ {
// 尝试将第index行的皇后摆放在第i列
if!(*col)[i] &&!(*dia1)[index+i] &&!(*dia2)[index-i+n-1] {
*row=append(*row, i)
(*col)[i] =true
(*dia1)[index+i] =true
(*dia2)[index-i+n-1] =true
putQueen(n, index+1, col, dia1, dia2, row, res)
(*col)[i] =false
(*dia1)[index+i] =false
(*dia2)[index-i+n-1] =false
*row= (*row)[:len(*row)-1]
}
}
return
}
funcgenerateBoard(nint, row*[]int) []string {
board:= []string{}
res:=""
fori:=0; i<n; i++ {
res+="."
}
fori:=0; i<n; i++ {
board=append(board, res)
}
fori:=0; i<n; i++ {
tmp:= []byte(board[i])
tmp[(*row)[i]] ='Q'
board[i] =string(tmp)
}
returnboard
}
// 解法二 二进制操作法 Signed-off-by: Hanlin Shi shihanlin9@gmail.com
funcsolveNQueens2(nint) (res [][]string) {
placements:=make([]string, n)
fori:=rangeplacements {
buf:=make([]byte, n)
forj:=rangeplacements {
ifi==j {
buf[j] ='Q'
} else {
buf[j] ='.'
}
}
placements[i] =string(buf)
}
varconstructfunc(prev []int)
construct=func(prev []int) {
iflen(prev) ==n {
plan:=make([]string, n)
fori:=0; i<n; i++ {
plan[i] =placements[prev[i]]
}
res=append(res, plan)
return
}
occupied:=0
fori:=rangeprev {
dist:=len(prev) -i
bit:=1<<prev[i]
occupied|=bit|bit<<dist|bit>>dist
}
prev=append(prev, -1)
fori:=0; i<n; i++ {
if (occupied>>i)&1!=0 {
continue
}
prev[len(prev)-1] =i
construct(prev)
}
}
construct(make([]int, 0, n))
return
}